Matematika

Pertanyaan

Diketahui A dan B adalah sudut lancip. Nilai Cos A = 3/5 dan Cos B = 5/13 berapakah nilai : A. Sin (A-B), B. Sin (A+B) ?

1 Jawaban

  • cos A = [tex]\frac{3}{5}[/tex]
    sin A = [tex]\frac{\sqrt{5^{2} - 3^{2}}}{5}[/tex]
    sin A = [tex]\frac{\sqrt{25 - 9}}{5}[/tex]
    sin A = [tex]\frac{\sqrt{16}}{5}[/tex]
    sin A = [tex]\frac{4}{5}[/tex]

    cos B = [tex]\frac{5}{13}[/tex]
    sin B = [tex]\frac{\sqrt{13^{2} - 5^{2}}}{13}[/tex]
    sin B = [tex]\frac{\sqrt{169 - 25}}{13}[/tex]
    sin B = [tex]\frac{\sqrt{144}}{13}[/tex]
    sin B = [tex]\frac{12}{13}[/tex]

    a) sin (A - B) = (sin A x cos B) - (cos A x sin B)
    sin (A - B) = ([tex]\frac{4}{5}[/tex] x [tex]\frac{5}{13}[/tex]) - ([tex]\frac{3}{5}[/tex] x [tex]\frac{12}{13}[/tex])
    sin (A - B) = [tex]\frac{20}{65}[/tex] - [tex]\frac{36}{65}[/tex]
    sin (A - B) = [tex]-\frac{16}{65}[/tex]

    b) sin (A + B) = (sin A x cos B) + (cos A x sin B)
    sin (A + B) = ([tex]\frac{4}{5}[/tex] x [tex]\frac{5}{13}[/tex]) + ([tex]\frac{3}{5}[/tex] x [tex]\frac{12}{13}[/tex])
    sin (A + B) = [tex]\frac{20}{65}[/tex] + [tex]\frac{36}{65}[/tex]
    sin (A + B) = [tex]\frac{56}{65}[/tex]

    #Jadikan jawaban paling cerdas yaa....(capek ngetik dan jawabnya),...hehehe..

Pertanyaan Lainnya